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Abstract—When a tube or duct flow is subjected to a streamwise periodic variation of wali temperature or
wall heat flux, a periodic thermally developed regime is established at sufficient distances from the inlet. In the
developed regime, similar heat-transfer characteristics occur in successive streamwise modules whose length
is equal to the period of the imposed variation. A methodology was developed for obtaining universal
solutions for the periodic fully developed regime. The end result of the development enables the wall heat flux
distribution corresponding to any given wall temperature variation to be determined via the summing of a
simple series. A similar series enables the wall temperature to be determined when the heat flux distribution is
given. The series contains influence coefficients which represent the solution for an array of pulses. A
procedure for determining these influence coefficients is presented which circumvents the need to solve the
differential energy equation. The use of the methodology was illustrated by application to sine wave wall
temperature and heat flux distributions.

NOMENCLATURE

specific heat at constant pressure;

heat flux for entrance region problem,
equation (18);

wall temperature for entrance region
problem, equation (23);

thermal conductivity;

period length of the imposed variation,
module length;

dimensionless length of module, (L/r,)/Pe;
dimensionless pulse length, ¥/N;
mass rate of flow;

number of subdivisions in a module;
Peclet number, 4(2rq)/a;

local wall heat-transfer rate per

unit length;

local wall heat flux;

radial coordinate;

tube radius;

temperature relative to any datum
such that T, # 0;

bulk temperature;

bulk temperature at x*;

bulk temperature rise per module;
wall temperature;

axial velocity;

mean velocity;

dimensionless axial coordinate, (x/r,)/Pe;
axial coordinate;

beginning of module of prescribed T, or
q variation ;

beginning of module of basic pulse
array.
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Greek symbols

a, thermal diffusivity;

A, influence coefficients, equation (11);
o, density:

Q, influence coefficients, equation (7).

INTRODUCTION

IN CONVENTIONAL duct flows, the thermally developed
regime is characterized by a heat-transfer coefficient
that is independent of the streamwise coordinate. In
the literature, a number of thermal boundary con-
ditions have been identified which give rise to the
developed regime. The best known among these are
uniform wall temperature and uniform heat addition
(or removal) per unit length. Thermal development is
also attained when there is convective heat exchange
between the external surface of the duct and a fluid
environment having a uniform heat-transfer coefficient
and uniform temperature. A fourth condition which
yields a developed regime is an exponential variation
(~e”*) of the heat transfer per unit length.+ From the
foregoing, it is seen that the boundary conditions
which define the conventional thermally developed
regime are either constant in the streamwise direction
or vary monotonically as an exponential.

One of the features of the thermally developed
regime is that the heat-transfer coefficients can be
obtained by solving equations which are substantially
simplified versions of the conservation laws. Further-

+In[1],itis shown that uniform wall temperature, uniform
heat addition, and external convection all correspond to heat-
transfer distributions that are special cases of the exponential
variation.
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more, the thermally developed results can be de-
termined without having to deal with the relatively
difficult entrance region problem.

Recently [2], the concepts of fully developed flow
and heat transfer were generalized to accommodate
ducts whose cross-sectional area varies periodically in
the streamwise direction. If L. denotes the streamwise
length of each cycle of the area variation, then
successive streamwise modules of length L possess
common fluid flow and heat-transfer characteristics.
In particular, the distribution of the heat-transfer
coefficient on the duct surfaces contained in any one
module is repeated in all other modules in the fully
developed regime. This characteristic enables the
analysis of the developed regime to be confined to a
single typical module, without involvement with the
entrance region problem.

In the present paper, a further generalization of the
thermally developed regime is formulated and illus-
trated via applications. Attention is focussed here on
flows in which there is a prescribed periodic variation
of either the wall temperature or the wall heat transfer
along the length of the duct. In particular, we consider
straight ducts of constant cross-section in which the
flow becomes hydrodynamically developed at suf-
ficient distances from the inlet. Such flows will ex-
perience a periodic thermally developed regime, the
nature of which will be described shortly. This periodic
regime, which exists in response to the thermal boun-
dary conditions, is in contrast to that of 2] which is
caused by flow periodicity.

The thermally developed regime to be described
here pertains to tubes and ducts for which the wall
temperature T, is circumferentially uniform but varies
in the streamwise direction. Consider first the case in
which T, varies periodically with the streamwise

gt

coordinate x as iltustrated schematically in Fig. 1,
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F1G. 1. A tube subjected to streamwise periodic variations of
wall temperature or wall heat flux.

where L denotes the period length. At sufficiently large
downstream distances, the thermal history experi-
enced by the fluid in any period length, for example,
between x = x* and x = (x* + L) has to be identical
to that experienced in all similar modules. From this, it
follows that the temperature distributions at x = x*,
x = (x"+L), x=(x"+2L),..., are the same. Since
these temperature distributions are identical, the net
rate of heat transfer per module is zero, that is, the
inflows and outflows along the length of the module

are in balance. These characteristics will be employed
to formulate the analysis of the thermally developed
regime for the prescribed temperature boundary con-
dition.

Next, suppose that the rate of heat transfer per unit
length (' is given a prescribed variation with x which is
once again illustrated by Fig. 1. Between two stations
such as x* and (x* + L), heat is added to (or removed
from) the fluid at the rate

Q' dx. H

Corresponding to Q, there is a bulk temperature rise
(or fall) AT, given by

AT, = Q/mc, 2

In the thermally developed regime, the temperature
distribution at (x* + L) is equal to that at x* plus the
additive constant AT,. This relation, which holds at
any pair of stations in the thermally developed regime
that are separated by the period length L, forms the
basis of the mathematical analysis.

As will soon be demonstrated, the analysis of the
periodic thermally developed regime can be confined
to a typical module of period length L and need not be
concerned with the entrance region. The governing
differential equation (i.e. the energy equation} and the
boundary counditions for the module will be discussed
in the next section. In general, numerical solutions are
required. Whereas there appear to be no insuperable
difficulties associated with the execution of the numeri-
cal solutions, there is a major drawback in a direct
numerical attack on the problem. In particular, a
specific numerical solution would have to be carried
out for each prescribed periodic distribution of T, or
Q. 1t appears preferable to formulate a methodology
capable of dealing with any arbitrary periodic distri-
bution without having to solve the governing differen-
tial equation.

The development and application of such a metho-
dology is the main focus of this paper. The essence of
the method is to envision the prescribed periodic
distribution as being made up of an assemblage of
pulses which approximate the distribution curve.
From the assemblage, a fundamental array of periodi-
cally positioned pulses is identified. The solution for
the fundamental array provides a table of influence
coefficients from which the results corresponding to
any prescribed periodic distribution can be synthe-
sized.

For concreteness, the methodology is developed in
terms of laminar flow in a circular tube, and cor-
responding tabulations of influence coefficients are
presented. The use of the methodology and the
tabulated information is illustrated by application to
the cases where the wall temperature and wall heat
transfer vary sinusoidally along the tube. It is worthy
of note, however, that the approach can also be
employed for turbulent flow as well as for other types
of ducts.
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THE SOLUTION METHOD

The most direct approach to the analysis of the
periodic thermally developed regime is to solve the
energy equation for a typical module. For constant
flwd properties and for negligible axial conduction
and viscous dissipation, the energy equation for
laminar hydrodynamically developed pipe flow is

TR
! ox  ror: or i
where the coordinates are illustrated in Fig. 1. To
complete the mathematical description of the problem,
equation (3) has to be supplemented by boundary
conditions at the tube wall and periodicity conditions
at the upstream and downstream ends of the module.
For concreteness, attention will be focused on the
module lying between x = x* and x = (x* + L)in Fig.
1.

For prescribed periodically varying wall tempera-
ture, the boundary and periodicity conditions are,
respectively

T,=T(x) x"<x<{x"+L1L}
TH{x"+Lyr]=Tix"r), 0<r<r,

pcp

(4a)
{4b)

Here, and throughout the rest of the paper, the
temperature T is taken relative to any datum such that
T.(x) # 0. When the heat transfer is prescribed and the
heating is uniform around the circumference of the
tube, then the local flux ¢ is equal to Q'/2rr, For
periodic g (or Q')

q = g(x} = k(dT/or)

XTL<x < (xT+L)y (5a)

ws

Tl(x"+Lyr]=TE"rN+AT,0<r<r, (5b)
where AT, is the bulk rise per module as given by
equation (2). It is the periodicity conditions (4b) and
{5b) which enable the fully developed regime to be
solved without having to deal with the entrance region.

In general, equation (3) would have to be solved
numerically and, except for isolated cases, the numeri-
cal problem is two dimensional and elliptic. Although
there is ample experience indicating that such pro-
blems can be solved, the fact remains that a new
solution would have to be carried out for each case.

As an alternative, a methodology will now be
developed which provides universal solutions applic-
able to any prescribed periodic wall temperature or
periodic heat flux.

Universal solutions—prescribed temperature

The linearity of the energy equation (3) and its
boundary and periodicity conditions permits super-
position. To this end, as illustrated in the upper
diagram of Fig. 2, the periodic wall temperature
distribution can be regarded as being made up of an
assemblage of temperature pulses. In the period length
L, there are N such pulses, each of width L/N.

Figure 2 illustrates how the total assemblage of
pulses can be broken down into N arrays. Each array

O
N |

T ]

————

\ N

F16. 2. Representation of the periodic distribution by an
assemblage of pulses and by N arrays of pulses.

consists of a succession of pulses, each of height T, (n
, N) and width L/N, which are spaced apart
by the period length L. Clearly, the superposition of
the N arrays results in the total assemblage of pulses
which represents the given periodic distribution. Fur-
thermore, the solutions for the N arrays, when super-
posed, give the solution to the given problem to an
accuracy that is governed by the size of the pulse width.
Although there are N solutions to be superposed, it
is not necessary to generate N independent solutions.
This is because each of the N arrays represents the
same problem, the only distinctions being a linear
displacement along the x-axis and a different pulse
height. Therefore, only a single solution need be
obtained—that corresponding to a typical array of
pulses (i.e. any one of the arrays pictured in Fig. 2). By
proper manipulation of the solution of this basic
problem, the solutions for all N arrays can be obtained.
The basic problem is pictured in Fig. 3, where a
dimensionless axial coordinate X and dimensionless
lengths ¥ and [ are used. These are defined as

X = (x/ro)/Pe, & = (Ljro)/Pe, 1= Z[N. (6)

=12,..

Furthermore, if T, represents the pulse height, then
T/T, may be used as the dimensionless temperature

Fi1G. 3. The basic pulse array.
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variable. These quantities, along with a dimensionless
radial coordinate r/r,, may be introduced into the
energy equation and the boundary and periodicity
conditions for the array of pulses. From this, itis found
that the problem is governed by only one parameter,
&

There are various options that might be considered
for solving the basic pulse problem, one of which is to
obtain direct numerical solutions. There is, however, a
simpler alternative, as will be described later in the
paper. For the present, it will be assumed that
solutions are available for various parametric values of
.

The solution yields the distribution of the heat flux g
along a typical module of the pulse array of Fig. 3. The
pulse module need not coincide with the module in the
given temperature distribution that is pictured at the
top of Fig. 2, that is, X* and X* may be different.
Indeed, this non-coincidence enables the solution for
the basic pulse array to serve for all N pulse arrays
shown beneath the equals sign in Fig. 2.

For the basic array of Fig 3, the solution gives the
heat fluxes g,,45,...,4y at the midpoints 1,2,... N of
the segments which make up the module. These results
are in dimensioniess form in terms of

qll Ti)/k’I:v = Qll’ l g n g N (7)

and are parameterized by . The Q, will be designated
as influence coefficients. For future reference, it should
be emphasized that the subscript n indicates the
location at which the influence of the pulse is being
expressed through . The numerical value of n is the
serial number of the segment of interest, counting the
pulsed segment as n = 1.

It will now be demonstrated how the influence
coefficients are employed to obtain the heat flux
distribution in a typical module of the temperature
distribution shown at the top of Fig. 2. In this
connection, let the points 1,2,..., N be positioned at
the midpoints of the successive segments which make
up the module. The heat fluxes at these points will be
denoted g(1), g(2),..., g(j},..., g(N}.

First, the contribution to the ¢’s due to the array of
pulses of height T,, will be determined. For this, the
basic array of pulses may be regarded as positioned so
that X* = X *. Correspondingly,

g1y = (kT /ro)Q), g2y = (KT, /ro)Q, ... (8)

Next, to obtain the contribution due to the array of
pulses of height T,,, the basic array is positioned so
that X* = (X * +/). For this situation,

q(1) = (kT o/ro)y,
q(2) = (kT2/ro )y, {9}
g(3) = kT eafro ). ...

Since the pulse is situated at segment 2, the proper
influence coefficient for ¢(2) is Q,, and the other
influence coefficients are taken relative to this pulse
position. For the array of pulses of height 7,5, the basic
array is positioned with X* = X" +21. The successive

Qs used for (1), g(2), ¢(3),... are Q. (, Ly, Q4.
and so on.

It remains to combine the contributions from the
various arrays of pulses. When the combination is
performed, there is obtained

j v
q(j)ra/k = Z Qj+1-—n T, + Z Q'\"+j-r-1~n T,, (10)
n=1 n=j+1
for j=1,2,...,N. Once the influence coefficients are
known, equation (10) can be used to compute the wall
heat flux distribution for any given periodic wall
temperature distribution T, (x).

As written, equation (10)1s not restricted to laminar
tube flows. It is applicable to any flow situation with
prescribed periodic wall temperature for which the
influence coefficients can be determined (r, would be
replaced by an appropriate characteristic dimension).

A listing of influence coefficients for laminar tube
flow is presented in Table 1. The table contains results
for five values of the dimensionless module length 7’
= (L/ry)}/Pe equal to 107%, 1077, 1072 107!, and 1.
For each of these, 20 influence coefficients are listed
{Le. N = 20). The motivation for selecting N = 20 is
that this number of subdivisions, in addition to
providing an adequate representation of most practi-
cal variations, enables the influence coefficients to be
used in subsequent calculations without the aid of a
digital computer. The first coefficient in each set is
positive whereas the others are negative and decrease
in magnitude with increasing n. The method by which
these coefficients were determined will be described
later. Their numerical application will be illustrated
shortly.

As a final remark about equation (10), it may be
noted that since g{ /) = 0 for uniform wall temperature,
it follows that the influence coefficients sum to zero, As
a consequence, a constant value can be added to all of
the T, without affecting g(j). Therefore, as expected,
is independent of the datum of the temperature.

Universal solutions—prescribed heat flux

The construction of the universal solutions for the
case of prescribed periodic wall heat flux is carried out
in a manner similar to that which has just been
presented for prescribed wall temperature. Figure 2
may be taken as the starting point of the derivation for
the prescribed heat flux case, where the distribution
curve at the top of the figure and the various pulse
arrays now represent heat flux rather than tempera-
ture. Furthermore, Fig 3 now depicts a basic array of
heat flux pulses, the solution for which can be utilized
to generate the solutions for all N of the pulse arrays
pictured in Fig. 2.

For the basic array, the solution gives the local wall-
to-bulk temperature difference at the midpoints
1,2,..., N of the segments which make up the typical
module. These results are expressed as

(T.—Flilgrokl= A, 1<n<N. (1)

The A, (the influence coefficients) depend parametri-
cally on & = (Ljry)/Pe.
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Table 1. Influence coefficientst Q,

561

{(Liro)/Pe =

n 0.0001 0.001 0.01 0.1 1.0

1 0.48532(+2) 0.22216(+2) 0.99999(+ 1) 0.43214(+1) 0.16611(+1)
2 —0.16147(+2) —-0.74815(+1) —0.34590(+ 1) —0.15958(+1) —0.75795(0)

3 —0.62273(+1) —0.28764(+1) —0.13201(+ 1) —0.59974(0) —0.29958(0)

4 —0.38842(+1) —0.17886(+1) —0.81465(0) —0.36376(0) —0.18765(0)

5 —0.28657(+1) —0.13157(+1) —0.59482(0) —0.26090(0) —0.12802(0)

6 —0.23094(+ 1) —0.10553(+1) —0.47374(0) —0.20411¢0) —0.88580(—1)
7 —0.19528(+1) —0.89180(0) —0.39767(0) —0.16832(0) —0.61425(—1)
8 —0.17120(+ 1) —0.77997(0) —0.34562(0) —0.14377(0) ~0.42610(—1)
9 —0.15371(+1) —0.69877(0) —0.30782(0) —0.12587(0) —0.29559(—1)
10 —0.14044(+ 1) —0.63713(0) —0.27911(0) —0.11224(0) —0.20506(—1)
i1 —0.13002(+ 1) —0.58870(0) —0.25654(0) —0.10149(0) —0.14225(—-1)
12 —0.12160(+1) —0.54961(0) —0.23832(0) —0.92780(—-1) —0.98686(—2)
13 —0.11466(+1) —-0.51733(0) —0.22326(0) —0.85771(—1) —0.68461(—2)
14 —0.10882(+1) —0.49020(0) —0.21060(0) —0.79493(—- 1) —0.47493(~-2)
15 —0.10383(+ 1) —0.46703(0) —0.19979(0) —0.74288(—1) —0.32947(-2)
16 —0.99513(0) —0.44698(0) —0.19042(0) —0.69771(—1) —0.22856(—2)
17 —0.95737(0) —0.42943(0) —0.18223(0) —0.65802(—1) —0.15856(—2)
18 —0.92401(0) —0.41392(0) —0.17498(0) ~0.62279(—1) -0.10100(—2)
19 —0.89427(0) —0.40010(0) —0.16852(0) —0.59120(—1) —0.76308(—3)
20 —0.86756(0) —0.38769(0) —0.16271(0) —0.56261(~1) —0.52937(-3)

+The numbers in parentheses denote powers of ten.
Table 2. Influence coefficientst A,
(Lirgl/Pe =

n 0.0001 0.001 0.01 0.1 1.0

1 0.037236 0.054007 0.090930 0.17387(0) 0.34472(0)

2 0.027942 0.033945 0.047224 0.74580(—1) 0.84525(—1)

3 0.024956 0.027424 0.032812 0.42311(—1) 0.21067(~—1)

4 0.023806 0.024907 0.027239 0.30020(—1) 0.58010(—2)

S 0.023145 0.023457 0.024030 0.23110(—1) 0.16060(—2)

6 0.022696 0.022471 0.021859 0.18567(—1) 0.44474(—3)

7 0.022362 0.021738 0.020259 0.15308(—1) 0.12316(—3)

8 0.022098 0.021158 0.018992 0.12940(—1) 0.34108(—4)

9 0.021881 0.020681 0.017956 0.10978(—-1) 0.94457(-5)
10 0.021697 0.020277 0.017081 0.94027(—-2) 0.26158(—5)
11 0.021537 0.019926 0.016327 0.81098(—2) 0.72441(-6)
12 0.021396 0.019616 0.015665 0.70300(—2) 0.20061(—6)
13 0.021270 0.019338 0.015075 0.61166(—2) 0.55556(—7)
14 0.021155 0.019086 0.014544 0.53364(—2) 0.15386(—7)
15 0.021050 0.018856 0.014061 0.46651(—2) 0.42608( —8)
16 0.020932 0.018643 0.013618 0.40845(—2) 0.11803(—8)
17 0.020862 0.018445 0.013210 0.35803(—2) 0.32724(-9)
18 0.020778 0.018260 0.012830 0.31409(—2) 0.90767(—10)
19 0.020698 0.018086 0.012477 0.27572(-2) 0.24374(—10)
20 0.020623 0.017922 0.012145 0.24215(-2) 0.80034(—11)

+The numbers in parentheses denote powers of ten.

The influence coefficients can be used to superpose
the various pulse arrays of Fig. 2 so as to synthesize the
given heat flux distribution. The process follows a
pattern identical to that for the case of prescribed
temperature, but with one exception. For prescribed
periodic wall temperature, the bulk temperature ts the
same at corresponding axial stations in successive
modules. On the other hand, for prescribed periodic
heat flux, the bulk temperature will, in general, change
from module to module by an amount AT, [equation
(2)]. Therefore, it is appropriate to identify the value of
the bulk temperature at some reference location.

HMT Vol. 21, No. 5—C

Since attention is being focused on a module which
extends from x = x* tox = (x* + L)as depicted at the
top of Fig. 2, the bulk temperature 7,* at x = x* will
be used as the reference value. The use of this reference
temperature means that appropriate constants have to
be added to the influence coefficients. This follows
because

+ +
TM'" ’1;) — ’1—;\'" ’1—"’" + 7—;7" ’1—;7 . ( l 2)
(qro/k) (aro/k) — (gro/k)

The first term on the right is A,, whereas the second
term is the change in the bulk temperature between x
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= x"* and x = x,. The latter is evaluated from the
energy balance

me,dT,/dx = 2nryg(x) or

dT,/dX = (dro/k)g(X) (13)

where g(X) = ¢ at a pulse and is zero otherwise.

Aside from the modification just discussed, the
superposition of the various pulse arrays proceeds as
before, with the result

i-1
[T =T Tkfro = X [Asei-a+ 414,

=t

A+ 2N

N
+ Z A&'+.j+l'¢:q”‘ (14}
n= g4

The quantity / is the dimensionless pulse width defined
by equation (6).

Equation (14) can be employed to evaluate the wall
temperature distribution for any prescribed periodic
variation of the wall heat flux. A listing of the influence
coefficients A, for the circular tube is given in Table 2
for N = 20 and for the same values of (L/r, )/ Pe as were
used for Table 1.

APPLICATION OF THE SOLUTION METHOD

To illustrate the method, solutions were sought for
the periodic wall temperature variation

T, = sin{2nx/L) (15)

where the amplitude is chosen as unity for con-
venience. As noted earlier, a constant can be added to
equation (15} without affecting the results. The dimen-
sionless module length (L/r,)/Pe was selected as 1072,
The heat flux distribution corresponding to equa-
tion (15) was obtained in two ways. One was by using
equation (10} in conjunction with Table 1. For the
other, the solution was recognized to be of the form

T{r, x) = y{r)sin(2ax/LY+ir)cos(2rx/L). (16}

When equation (16) is substituted into the energy
equation (3), a pair of coupled ordinary differential
equations are obtained for x and . These were solved
by finite differences, with the result

grork = 6.23sin(2rx/L)+3.95cos(2nx/L). (17)

Figure 4 shows a comparison of the heat flux
distribution obtained from equation (10) and Table 1
with that from equation (17). The agreement is seen to
be quite satisfactory, especially in view of the minimal
computational effort involved in applying equation
(10). Furthermore, the influence coefficients Q, that
were used as input to equation (10) are based on only
20 subdivisions. As will be demonstrated shortly, even
better agreement can be obtained when a greater
number of subdivisions are employed.

As a second illustration, equation (14) and Table 2
were employed to predict the wall temperature in the
presence of a prescribed heat flux, For this purpose, the
given heat flux distribution was that of equation (17),

which corresponds to the wall temperature distri-
bufion (15).

The application of equation (14) and Table 2 to the
heat flux (17) vields a wall temperature distribution
that is shown in Fig. 5. Also plotted in the figure is the
exact solution, equation (15). The agreement in evid-
ence in this figure is even better than that of Fig. 4.

As will be demonstrated in the next section of the
paper, influence coefficients for any number of sub-
divisions N can be generated without difficulty. To
examine the effect of the number of subdivisions on the
results, the heat flux distribution corresponding to the
wall temperature (15) was evaluated {from equation
{10) using influence coefficients based on N = 40 and
N = 80. These results are plotted in Fig. 6 along with
the exact solution (17). It is evident that higher
accuracy can be obtained by using a greater number of
subdivisions, although N = 20 should be sufficient for
most applications.

[t is interesting to observe that equation (15) and its
harmonics, when taken together as a Fourier series,
provides an alternative approach to solving problems
of prescribed periodic wall temperature. To implement
such an approach, it would have been necessary to
obtain wall heat flux results similar to equations (17)
for all the harmonics. The coefficients in these equa-
tions would then be tabulated in a manner similar to
the listing of the influence coefficients in Table 1.

The selection of the pulse method in preference to
the aforementioned Fourier method was based on the
fact that the latter would require an additional pre-
paratory step to initiate its use. Specifically, the user
would have to fit a Fourier series to the prescribed wall
temperature variation. Furthermore, for many types of
variations, especially those involving discrete data or
rapid changes, it is not possible to obtain a satisfactory
fit with a Fourier series. By comparison, the task of
discretizing a given variation into pulse arrays involves
virtually no effort. Also, the pulse representation can
usually be made to fit the given variation to any degree
of accuracy.

DETERMINATION OF THE INFLUENCE COEFFICIENTS

As noted earlier, there are various options available
for the determination of the influence coefficients. In
certain problems, it may be necessary to solve the
energy equation for one typical module in a periodic
array of pulses such as those pictured in Fig. 3. On the
other hand, in other problems, the influence coef-
ficients may be deduced from available solutions by
means of algebraic operations. This latter approach
can be employed for determining the influence coef-
ficients for laminar tube flow with prescribed periodic
variations of wall temperature or wall heat flux,
respectively listed in Tables 1 and 2. The case of
prescribed wall temperature will be considered first.

Prescribed wall temperature

In the literature, solutions are available for the
fundamental problem of a hydrodynamically de-
veloped, isothermal laminar flow with bulk tempera-
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FiG. 4. Wall heat flux distribution corresponding to a sine-
wave wall temperature variation. Equation (10) was eva-
luated with N = 20.
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predictions of equation (10).
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ture T,, entering a tube whose wall temperature is
uniform and equal to T,. Since the energy equation
which forms the basis of these solutions is linear, it
enables superposition of variants of the fundamental
problem. Furthermore, without loss of generality, T,
can be taken as the datum temperature (i.e. T,, = 0)
and T, referred toit.

For the fundamental problem, the solution for the
local wall heat flux has the form

18
kT, =% Pe (18)

where ( is the distance measured downstream from the

cross-section where the flow first encounters the wall

temperature T,. The explicit algebraic expressions
for f will be presented later. In addition, in view
of the argument of f, it is advantageous to work in

terms of the dimensionless streamwise coordinate X

= (x/ry)/Pe and, in what follows, all lengths will be

dimensionless with respect to r,Pe.

With regard to superposition, suppose, for example,
that the solutions for the following problems are to be
added.

{a) Hydrodynamically developed, isothermal flow
with bulk temperature T,, =0 for X < 0. Tube
wall temperature uniform and equal to T, for X
>0

(b) Hydrodynamically developed, isothermal flow
with bulk temperature T,, =0 for X </ Tube
wall temperature uniform and equalto — T for X
>

The wall temperature distribution for the problem

which results from the additive superposition of (a)

and (b} s

T=0, X<0
T=T, 0<X<! (19
T=0, X>1

which represents a wall temperature pulse of height T,
and duration /.

A pair of such pulses which are spaced by a
dimensionless distance ¥ can be synthesized by
adding to (a) and (b) the following:

(¢) Same as (a), but with 0 in the X-inequalities
replaced by ¥

(d) Same as (b), but with | replaced by (I+ ¥’).

By proceeding along these lines, a periodic array of

pulses of duration [ that are separated by a period

length ¥ can be built up. The solution for the array is

the sum of the solutions for problems (a), (b), (c),....

For these pulses, the local heat flux distribution in
the periodic thermally developed regime can be de-
duced by making use of the aforementioned super-
position. To facilitate the derivation, reference is made
to Fig. 3 which shows the periodically pulsed wall
temperature distribution for several modules in the
developed regime. Each module is subdivided into N
segments of length [ such that the period length ¢ is
equal to NI The points 1,2,..., N are positioned at the
midpoints of the respective segments. Attention is
focused on the module delineated by braces.
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Consider first the contribution to the heat flux at
points 1,2,3,... due to the pulse at segment 1. This
pulse is created by temperature steps of height T, and

— T, respectively apphed atX=X*and X = X*+/
From equation (18}, there follows

giro/kT, = f(1/2)
Garo/k T = f(312)=1(1/2)
giro kT, = f(SI2}—f(3/2)

and so forth.

Next, the contributions to g,,¢,. ¢s,. .. of the pulse

between X = (X*— ¥ yand X = (X*— )41 can be
written

qiro/k T, = (& +12) (<" —1]2)

Goro/k T, = LY+ 32y (& +1/2) 21

W =S+ 52—+ 31/2)

ete. The contributions of all prior pulses follow in a
similar manner.

At any point n=1,2,...
contributions leads to

qsro/k T,

, the sum of all such

T,= Y {flm-1)¥+C2n-1)j2]
m=1
—f(m

where /= 0 when its argument is negative. The upper
index of the summation has purposely been left
indefinite since the summing operation is continued
until g, is not affected by the use of additional terms.

Equation (22) was employed in the determination of
the Q influence coefficients of Table I, where N = v//I
= 20. It was also employed to generate the influence
coefficients for N = 40 and 80 used in Fig. 6.

For the evaluation of equation (22), algebraic
expressions for f were taken from equation (18) and
Table 4 of [3]and from equation (5)and Table 1 of [4].
The first of these is a Leveque-type solution and is
especially accurate at small values of the argument of /.
It was used for arguments between zero and 0.0076.
The second, a Graetz-type solution whose accuracy
increases as the argument increases, was used for
arguments greater than 0.0076. At the break point,
both expressions yield identical values of f.

qn r()/k

-1y +Q2n-32]} (22)

Prescribed wall heat flux

The influence coefficients for prescribed wall heat
flux will be derived by a procedure similar to that of the
foregoing. The fundamental problem whose solutions
will now be utilized is that in which a hydrodynami-
cally developed, isothermal flow (bulk temperature
T,o = O)enters a tube in which there is a uniform wall
heat flux g. The solution for the wall temperature
distribution has the form

T, . ( {iro

B (23)
(gro/k) q»Pe

where { is the downstream distance from the cross-
section where g is first imposed.
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By superposing positive and negative heat flux steps
in a manner identical to that of the preceding section, a
periodic array of heat pulses of height g, duration {, and
period length & can be constructed. Figure 3 will now
be employed as a representation of such an array.

The pulse that is astride the segment I is the
resultant of heat flux steps of height ¢ and —g,
respectively applied at X = X* and X = X*+/. Cor-
responding to this pulse, the dimensionless wall tem-
peratures T, /lgro/k} at points 1,2,... can be written
with the aid of the fundamental solution (23). The
resulting algebraic expressions are identical to the
RHS of equation (20), with freplaced by g. In the same
way, the contribution of the pulse between X = (X*
—Yand X = (X* - )+ 1to T, /(gro/k) is given by
the RHS of equation (21), again with f replaced by ¢.
The contributions of all prior pulses can be written in
an analogous manner.

The wall temperature distribution in the module of
interest can be obtained by summing the various
contributions identified in the prior paragraphs with
the result

T./(gro/k) = RHS of 22) with f—g. (24)

It is important to note that T,,, will increase steadily as
more and more terms are taken in the summation that
appears on the RHS of equation (24). This is because
the wall temperature itsell never becomes fully de-
veloped. Rather, it is (7,,— T;) that is endowed with
fully developed characteristics.

It is, therefore, relevant to obtain expressions for (7,
— T),/(gro/k). With regard to the bulk temperature, its
variation is governed by

dT,/dX = (4ro/k)q(X) (25)

where g{X ) = g at the successive pulses and is zero
otherwise. From this, it readily follows that

rr'x/(qr()/k) = Z (41) - 216:)1

m=1
where &,, =1 or 0 when n=1 or # l. Then, by
bringing together equations (24) and {26),

(26)

(T, — Ti)a/(gro/k) = RHS of (24)—RHS of (26). (27)

The summing operation in equation (27) is continued
until the use of additional terms has no more effect.

For the numerical evaluation of equation (27), the
expression for g given in equation (17) and Table 2 of
[3] was employed for arguments between zero and
0.033. For arguments greater than this value, the ¢
expression was that of equation (9) and Table 1 of [5].

Equation (27) was used to generate the influence
coefficients A listed in Table 2. The calculations were
performed with N = /] = 20 and for several para-
metric values of ¥

CONCLUDING REMARKS

It has been demonstrated that a streamwise periodic
variation of either the wall temperature or the wall
heat flux gives rise 1o a periodic thermally developed
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regime at sufficiently large downstream distances. If L
denotes the period length of the variation, then in the
developed regime successive streamwise modules of
length L possess similar heat-transfer characteristics.

A methodology was developed for obtaining uni-
versal solutions for the periodic thermally developed
regime, either for prescribed wall temperature or
prescribed wall heat flux. When the temperature is
prescribed, the method enables the distribution of the
wall heat flux in any typical period length to be
determined via the summing of a simple series. The
coefficients in the series (i.e. the influence coeffictents)
are universal in that they do not depend in any way on
the wall temperature distribution. The series will
accept any temperature distribution as input.
Similarly, a series involving universal coefficients
was constructed for determining the wall tempera-
ture distribution corresponding to any periodic wall
heat flux variation.

The influence coefficients for the case of given
temperature stem from the solution of a problem
consisting of a periodic array of temperature pulses.
Similarly, for given heat flux, the basic problem is that
of a periodic array of heat pulses. These problems may
be solved by dealing directly with the differential
energy equation and using the fact that only a typical
module of period length L need be considered for the
thermally developed solution.

An alternative procedure for solving the basic pulse
problem was developed here which circumvents the
task of solving the energy equation. It makes use of
available thermal entrance region solutions for uni-
form wall temperature and uniform wall heat flux. The
pulse problem results are obtained by performing
summing and differencing operations on the entrance
region solutions. This approach was employed to
generate the influence coefficients listed in this paper
for laminar pipe flow.

The universal solution method was illustrated by
application to sine wave temperature and heat flux
distributions, and good agreement was obtained with
the results of a finite-difference solution.

The methodology developed here is not restricted to
laminar tube flows. Rather, it can be employed for any
duct flow situation for which the appropriate influence
coefficients can be generated.

The use of a Fourier series method as an alternative
approach for solving problems of prescribed periodic
wall temperature or heat flux was discussed in the text
following the illustrative example. The reasons for
preferring the pulse method were outlined there.
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LE REGIME PERIODIQUE THERMIQUEMENT DEVELOPPE DANS DES
TUBES AVEC TEMPERATURE OU FLUX PARIETAUX PERIODIQUES
LONGITUDINALEMENT

Résumé—Un régime périodique thermiquement développé s*établit & partir d’une certaine distance de
Ientrée lorsqu'un écoulement dans un tube est soumis & une variation périodique de température de
paroi ou de flux pariétal dans le sens du courant. En régime développé. les caractéristiques de transfert
se retrouvent semblables dans des modules successifs dont la longueur est égale a la période de variation
imposée. On développe une méthodologie pour obtenir des solutions universelles pour le régime périodique
pleinement développé. Le résultat final du développement permet d’obtenir la distribution du flux de
chaleur, correspondant a une variation quelconque de température pariétale, par sommation d’une simple
série. De méme est déterminée la température de la paroi quand est donnée la distribution du flux
thermique. Les séries contiennent des coefficients d’influence qui représentent la solution pour une suite
de pulsations. On présente une procédure pour déterminer ces coefficients d'influence, laquelle évite la
résolution de I'équation de I'énergie. L'utilisation de la méthodologie est illustrée par le cas de distribu-
tions sinusoidales de la température et du flux thermique a la paroi.

DAS PERIODISCHE THERMISCH AUSGEBILDETE GEBIET IN
KANALEN MIT IN STROMUNGSRICHTUNG PERIODISCHER
WANDTEMPERATUR ODER WARMESTROMDICHTE

Zusammenfassung— Wenn eine Strémung in einem Rohr oder Kanal in Strémungsrichtung einer periodischen
Anderung der Wandtemperatur oder der Wirmestromdichte an der Wand unterworfen wird, so bildet sich in
gentigendem Abstand vom EinlaB ein periodisches thermisch ausgebildetes Gebiet aus. Im ausgebildeten Gebiet
treten in nach Stromungsrichtung aufeinanderfolgenden Abschnitten, deren Linge der Periode der aufgegebenen
Anderung entspricht, dhnliche Wirmetransporteigenschaften auf. Es wurde eine Methode entwickelt, um
allgemeine Losungen fiir das periodische, voll ausgebildete Gebiet zu erhalten. Das Endergebnis der
Entwicklung ermoglicht durch Summieren einer einfachen Reihe die Bestimmung der Verteilung der
Wirmestromdichte lings der Wand fiir jede vorgegebene Anderung der Wandtemperatur. Eine iihnliche Reihe
ermoglicht die Bestimmung der Wandtemperatur, wenn die Verteilung der Wirmestromdichte vorgegeben ist.
Die Reihe enthalt EinfluBkoeffizienten, welche die Losung fiir ein Feld von Impulsen darstellen. Es wird cin
Verfahren zur Bestimmung dieser Einflulkoeffizienten vorgestellt, welches die Notwendigkeit der Lisung der
differentiellen Energiegleichung umgeht. Die Methode wurde durch Anwendung auf sinusférmige Verteilung
der Wandtemperatur und Wirmestromdichte veranschaulicht.

NEPUOAUYECKNK PA3ZBUTHIN TEIUIOBOW PEXXUM B KAHAJIAX
C NNEPUOAMYECKHU UIMEHSAKIWMUCSA 11O HATIPABJEHWUIO TEYEHWA
TEMIIEPATYPOW CTEHKU U IUVIOTHOCTBIO TETUJIOBOI'O [MTOTOKA

Annoraipu — Korga npu teueHud B Tpybe TemriepaTypa CTEHKM TPyObl HITH MIIOTHOCTDH TEMJIOBOTO
MOTOKA HA CTEHKE MEPHOAMYECKH M3MEHAIOTCA MO HAMpPABICHUIO TEYEHHS, TO NEPHOAHYECKHUH pa3-
BHTBIH TEIJIOBOI PEXHM YCTAHABIMBACTCA HA NOCTATOMHO OONBLIMX PaccTOAHMAX OT Bxona. ITpwm
pPa3BUTOM peXHME OAMHAKOBblE KOIDPULMEHTHl TEII00OMEHA BCTPEYAlOTCA B MOCHENOBATENLHO
YepeayIOIIMXCA HATIPABJIEHHBIX 10 TEYEHHIO MOAYJIAX, [IHHA KOTOPbIX PABHA NMEPHOY HANOXEHHbIX
BO3MyILIeHHI. Pa3paGoTraHa METONHKA MOJIYYEHHS YHUBEPCABHBIX PELUEHHH ANA MEPHOIMYECKOTO
NOMHOCTBIO Pa3BHUTOrO peXHMa, MO3BONSAIOWIAN [OCPEICTBOM CYMMHMPOBAHHMS [IPOCTHIX psNOB
ONpENEIATh paclpeic/ieHue IIOTHOCTH TEIUIOBOTO MOTOKA HAa CTEHKE Npu JIo0OM 3aJaHHOM
HM3MEHEHMH TeMIepaTypbl CTEHKd. Takue pAmbl OatoT BO3MOXKHOCTb ONPEAENATH TEMIEpaTypy
CTEHKH NpH 3aJaHHOM pAaChpeleSieHHMH IUIOTHOCTH TEINIOBOTO MOTOKA. B MaHHBIH pax BXOAAT
KO3(OHILHEHTHI BIHSHUA, NPEICTABIAIOLIME PELUEHHE AN A000ro BuAa UMMYbCoB. [Mpeanoxena
METOAMKA ONpPENEICHHS 3THX KO3 HUHEHTOB, NMPH KOTOPOH OTNafaeT HeOOXOAMMOCTb pellieHHs
auddepeHUMaIEHOTO ypaBHEHHs JHEpPrHH. IIpuMeHeHue METOMMKH I10KA3aHO Ha NpHMepe CHHY-
COHAANIBHBIX H3MEHEHHH TEMIEPAaTYPbl CTCHKH M IIIOTHOCTH TEIUIOBOTO MOTOKA.



