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Abstract-When a tube or duct Row is subjected to a streamwise periodic variation of wall temperature or 
wall heat flux, aperiodic thermally developed regime isestablished at sufficient distances from the inlet. In the 
developed regime, similar heat-transfer characteristics occur in successive streamwise modules whose length 
is equal to the period of the imposed variation. A methodology was developed for obtaining universal 
solutions for the periodic fully developed regime. The end result of the development enables the wall heat flux 
distribution corresponding to any given wail temperature variation to be determined via the summing of a 
simple series. A similar series enables the wall temperature to be determined when the heat flux distribution is 
given. The series contains influence coefficients which represent the solution for an array of pulses. A 
procedure for determining these influence coefficients is presented which circumvents the need to solve the 
differential energy equation. The use of the methodology was illustrated by application to sine wave wall 

temperature and heat flux distributions. 

NOMENCLATURE Greek symbols 

specific heat at constant pressure; 
heat flux for entrance region problem, 

equation (18); 
wall temperature for entrance region 

problem, equation (23); 
thermal conductivity; 
period length of the imposed variation, 

module length; 
dimensionless length of module, (L/r,)/Pe; 
dimensionless pulse length, V/N; 
mass rate of flow; 
number of subdivisions in a module; 
Peclet number, ti(2r,)/cc ; 
local wall heat-transfer rate per 

unit length ; 

thermal diffusivity; 
influence coefficients, equation (11); 
density; 
influence coefficients, equation (7). 

INTRODUCTION 

local wall heat flux ; 
radial coordinate; 
tube radius ; 
temperature relative to any datum 
such that T,, # 0; 

bulk temperature; 
bulk temperature at .x+ ; 
bulk temperature rise per module ; 
wall temperature; 
axial velocity; 
mean velocity; 
dimensionless axial coordinate, (x/ro)/Pe; 

axial coordinate ; 
beginning of module of prescribed T,,. or 
q variation ; 
beginning of module of basic pulse 
array. 

IN CONVENTIONAL duct flows, the thermally developed 
regime is characterized by a heat-transfer coefficient 
that is independent of the streamwise coordinate. In 
the literature, a number of thermal boundary con- 
ditions have been identified which give rise to the 
developed regime. The best known among these are 
uniform wall temperature and uniform heat addition 

(or removal) per unit length. Thermal development is 
also attained when there is convective heat exchange 
between the external surface of the duct and a fluid 
environment having a uniform heat-transfer coefficient 
and uniform temperature. A fourth condition which 
yields a developed regime is an exponential variation 
(me”‘) of the heat transfer per unit length.3 From the 
foregoing, it is seen that the boundary conditions 
which define the conventional thermally developed 
regime are either constant in the streamwise direction 
or vary monotonically as an exponential. 

One of the features of the thermally developed 
regime is that the heat-transfer coefficients can be 
obtained by solving equations which are substantially 
simplified versions of the conservation laws. Further- 

+In [l], it is shown that uniform wall temperature, uniform 
heat addition, and external convection all correspond to heat- 
transfer distributions that are special cases of the exponential 
variation. 
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more, the thermally developed results can be de- 
termined without having to deal with the relatively 
difficult entrance region problem. 

Recently [2], the concepts of fully developed flow 
and heat transfer were generalized to accommodate 
ducts whose cross-sectional area varies periodically in 

the streamwise direction. If L denotes the streamwise 
length of each cycle of the area variation, then 
successive streamwise modules of length 1. possess 
common Ruid flow and heat-transfer characteristics. 
In ~trticular, the distributi~~n of the bleat-transfer 
coefficient on the duct surfaces contained in any one 
module is repeated in all other modules in the fully 
developed regime. This characteristic enables the 
analysis of the developed regime to be confined to a 
single typical module, without involvement with the 

entrance region problem. 
In the present paper, a further generalization of the 

thermally developed regime is formulated and illus- 
trated via applications. Attention is focussed here on 
flows in which there is a prescribed periodic variation 

of either the wall temperature or the wall heat transfer 
along the length of the duct. In particular, we consider 
straight ducts of constant cross-section in which the 
flow becomes hydrodynamically developed at suf- 
ficient distances from the inlet. Such flows will ex- 
perience a periodic thermally developed regime, the 
nature of which will be described shortly. This periodic 
regime, which exists in response to the thermal boun- 
dary conditions, is in contrast to that of [Z] which is 

caused by flow periodicity. 
The thermally developed regime to be described 

here pertains to tubes and ducts for which the wall 
temperature T,, is circumferentially uniform but varies 
in the streamwise direction. Consider first the case in 
which T,e varies periodically with the streamwise 
coordinate s as iifustrated schematically in Fig. 1, 

I 
2 

x+ t L ’ 

FIG. I. A tube subjected to streamwise periodic variations of 
wall temperature or wall heat Bux. 

The development and application of such a metho- 
dology is the main focus of this paper. The essence of 
the method is to envision the prescribed periodic 
distribution as being made up of an assemblage of 
pulses which approximate the distribution curve. 
From the assemblage, a fundamental array of periodi- 

cally positioned pulses is identified. The solution for 
the fundamental array provides a table of influence 
coefficients from which the results corresponding to 
any prescribed periodic distribution can be synthe- 

sized. 
where L denotes the period length. At sufficiently large For concreteness, the methodology is developed in 
downstream distances, the thermal history experi- terms of laminar Row in a circular tube, and cor- 
enced by the fluid in any period length, for example, responding t~~bul~~ti(~t~s of influence coefficients arc 
between s = x+ and .Y = (r+ + L) has to be identical presented. The use of the methodol~~gy and the 
to that experienced in all similar modules. From this, it tabulated information is illustrated by application to 
follows that the temperature distributions at .Y = .Y+, the cases where the wall temperature and wall heat 
.Y = (s+ +L), .X = (s” -l-X),. ._, are the same. Since transfer vary sinusoidally along the tube. It is worthy 
these temperature distributions are identical, the net of note, however, that the approach can also be 
rate of heat transfer per module is zero, that is, the employed for turbulent How as well as for other types 
infiows and outflows along the length of the module of ducts. 

are in balance. These characteristics will be employed 
to formulate the analysis of the thermally developed 
regime for the prescribed temperature boundary con- 
dition. 

Next, suppose that the rate of heat transfer per unit 
length Q’ is given a prescribed variation with x which is 

once again illustrated by Fig. 1. Between two stations 
such as x + and (s” -t L), heat is added to (or removed 
from) the fluid at the rate 

;r + ,. 

Q= 1 Q’ d.s. (1) 
. I 

Corresponding to (2. there is a bulk temperature rise 
(or fall) A& given by 

AT, = Q/&c, (7) 

In the thermally developed regime, the temperature 
distribution at (s+ + L) is equal to that at .Y+ plus the 
additive constant AT,. This relation, which holds at 
any pair of stations in the thermally developed regime 
that are separated by the period length t, forms the 
basis of the mathematical analysis. 

As will soon be demonstrated, the analysis of the 

periodic thermally developed regime can be confined 
to a typical module of period length L and need not be 
concerned with the entrance region. The governing 
differential equation (i.e. the energy equation) and the 
boundary conditions for the module will be discussed 
in the next section. In general, numerical solutions are 
required. Whereas there appear to be no insuperable 
difficulties associated with the execution of the numeri- 
cal solutions, there is a major drawback in a direct 
numerical attack on the problem. In particular. a 
specific numerical solution would have to be carried 
out for each prescribed periodic distribution of 7;,. or 
Q’. It appears preferable to formulate a methodology 
capable of dealing with any arbitrary periodic distri- 
bution without having to solve the governing differen- 
tial equation. 
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THE SOLUTION METHOD 

The most direct approach to the analysis of the 
periodic thermally developed regime is to solve the 
energy equation for a typical module. For constant 
fluid properties and for negligible axial conduction 
and viscous dissipation, the energy equation for 
laminar hydrodynamically developed pipe flow is 

pc,Ug=;$,rg) i (3) 

where the coordinates are illustrated in Fig. 1. To 
complete the mathematical description of the problem. 
equation (3) has to be supplemented by boundary 
conditions at the tube wail and periodicity conditions 
at the upstream and downstream ends of the module. 
For concreteness, attention will be focused on the 
module lying between x = .Y’ and .s = (.Y+ + L) in Fig. 
1. 

For prescribed periodically varying wall tempera- 
ture, the boundary and periodicity conditions are, 
respectively 

T, = T,.(x), x+ < .Y < (xi + L) (ha) 

‘T&C’ +L).r] = T(.u’,I), 0 d r ,i ro. (4b) 

Here, and throughout the rest of the paper, the 
temperature T is taken relative to any datum such that 
T,(s) # 0. When the heat transfer is prescribed and the 
heating is uniform around the circumference of the 
tube, then the local flux q is equal to Q’/Zrrr,. For 
periodic q (or Q’) 

q = q(s) = k(dT/dr) ,,,, .Y+ < .Y < (.Y+ -i-L) (5a) 

T[(.Y+ +~),r] = T(x+,r)+AT,,O < r < r. (5b) 

where ATh is the bulk rise per module as given by 
equation (2). It is the periodicity conditions (4b) and 
(5b) which enable the fully developed regime to be 
solved without having to deal with the entrance region. 

In general, equation (3) would have to be solved 
numerically and, except for isolated cases, the numeri- 
cal problem is two dimensional and elliptic. Although 
there is ample experience indicating that such pro- 
blems can be solved, the fact remains that a new 
solution would have to be carried out for each case. 

As an alternative, a methodology will now be 
developed which provides universal solutions appiic- 
able to any prescribed periodic wall temperature or 
periodic heat flux. 

Universirl solutions-prescribed temperature 

The linearity of the energy equation (3) and its 
boundary and periodicity conditions permits super- 
position. To this end, as illustrated in the upper 
diagram of Fig. 2, the periodic wall temperature 
distribution can be regarded as being made up of an 
assemblage of temperature pulses. In the period length 
L, there are N such pulses, each of width L/N. 

Figure 2 illustrates how the total assemblage of 
pulses can be broken down into N arrays. Each array 

+ 
l l . . . . l . 

L 

Ftc;. 2. Representation of the periodic distribution by an 
assemblage of pukes and by N arrays of pulses. 

consists of a succession of pulses, each of height T,,,, (n 
= 1,2,. . , N) and width L/N, which are spaced apart 
by the period length L. Clearly, the superposition of 
the N arrays results in the total assemblage of pulses 
which represents the given periodic distribution. Fur- 
thermore, the solutions for the N arrays, when super- 
posed, give the solution to the given problem to an 
accuracy that is governed by the size of the pulse width. 

Although there are N solutions to be superposed, it 
is not necessary to generate N inde~ndent solutions. 
This is because each of the N arrays represents the 
same problem, the only distinctions being a linear 
displacement along the s-axis and a different pulse 
height. Therefore, only a single solution need be 
obtained-that corresponding to a typical array of 
pulses (i.e. any one of the arrays pictured in Fig. 2). By 
proper manipulation of the solution of this basic 
problem, the solutions for all N arrays can be obtained. 

The basic problem is pictured in Fig. 3, where a 
dimensionless axial coordinate X and dimensionless 
lengths P” and 1 are used. These are defined as 

X = (.uir,)/Pe, Y = (L/f-,)/Fe, 1 = Y/iv. (6) 

Furthermore. if T,, represents the pulse height, then 
TIT,,. may be used as the dimensionless temperature 

X* I 
FIG. 3, The basic pulse array. 
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variable. These quantities, along with a dimensionless 
radial coordinate r/rO, may be introduced into the 
energy equation and the boundary and periodicity 
conditions for the array of pulses. From this, it is found 
that the problem is governed by only one parameter, 

-Y. 
There are various options that might be considered 

for solving the basic pulse problem, one of which is to 
obtain direct numerical solutions. There is, however, a 
simpler alternative, as will be described later in the 
paper. For the present, it will be assumed that 
solutions are available for various parametric values of 

1/‘. 
The solution yields the distribution of the heat flux q 

along a typical module of the pulse array of Fig. 3. The 
pulse module need not coincide with the mod&e in the 
given temperature distribution that is pictured at the 
top of Fig. 2, that is, X* and X+ may be different. 
Indeed, this non-coincidence enables the solution for 
the basic pulse array to serve for all N pulse arrays 
shown beneath the equals sign in Fig. 2. 

For the basic array of Fig. 3, the solution gives the 
heat fluxes ql, q2,. . , y?; at the midpoints I, 2,. . . , N of 
the segments which make up the module. These results 
are in dimensionless form in terms of 

q,, T,jkT,, = C-i,,, I < II < N (7) 

and are parameterized by 9’. The Q, will be designated 
as influence coefficients. For future reference, it should 
be emphasized that the subscript II indicates the 
location at which the influence of the pulse is being 
expressed through Q,. The numerical value of II is the 
serial number of the segment of interest, counting the 
pulsed segment as II = 1. 

It will now be demonstrated how the influence 

coeficients are employed to obtain the heat fiux 
distribution in a typical module of the temperature 
distribution shown at the top of Fig,. 2. In this 
connection, let the points 1,2,. . , N be positioned at 
the midpoints of the successive segments which make 
up the module. The heat fluxes at these points will be 

denoted q(i), q(Z),. . , q(j) ,..., q(N). 
First, the contribution to the q’s due to the array of 

pulses of height T,,., will be determined. For this, the 
basic array of pulses may be regarded as positioned so 
that X* = X+. Correspondingly. 

q(l)= (k~~~~~~)~,, 42) = (kT,,,,,r,,P,,.... (8) 

Next, to obtain the contribution due to the array of 
pulses of height T& the basic array is positioned so 
that X* = (X’ + I). For this situation, 

PI 

Since the pulse is situated at segment 2, the proper 
influence coefficient for q(2) is !A,, and the other 
influence coefficients are taken relative to this pulse 
position. For the array ofpulses of height ?Q3, the basic 
array is positioned with X* = X+ +21. The successive 

Q’s used for q(l), q(Z), q(3) ,... are Q,_,, Q,, R, ,..., 
and so on. 

It remains to combine the contributions from the 
various arrays of pulses. When the combination is 
performed, there is obtained 

n- I n=j+l 

for i = 1.2,. , !V. Once the influence coefficients are 
known, equation (IO) can be used to compute the wall 
heat flux distribution for any given periodic wall 
temperature distribution 7;,.(s). 

As written, equation (10) is not restricted to laminar 
tube flows. It is applicable to any flow situation with 

prescribed periodic wall temperature for which the 
influence coefficients can be determined (rO would be 
replaced by an appropriate characteristic dimension). 

A listing of influence coefficients for laminar tube 
flow is presented in Table 1. The table contains results 
for five values of the dimensionless module length I/’ 
= (L/r,):Pe equal to IO-&, 10-“, LO-‘, IO-‘, and I. 
For each of these, 20 influence coefficients are listed 
(i.e. N = 20). The tnotivation for selecting N = 20 is 
that this number of subdivisions, in addition to 
providing an adequate representation of most practi- 
cal variations, enables the influence coefficients to be 
used in subsequent calculations without the aid of a 
digital computer. The first coefficient in each set is 
positive whereas the others are negative and decrease 
in magnitude with increasing 81. The method by which 

these coefficients were determined will be described 
later. Their numerical application will be illustrated 

shortly. 
As a final remark about equation (lo), it may be 

noted that since y(,i) = Ofor uniform wall tempe~dture, 
it follows that the influence coefficients sum to zero. As 
a consequence, a constant value can be added to all of 
the T,., without affecting q(j). Therefore, as expected, y 
is independent of the datum of the temperature. 

The construction of the universal solutions for the 
case of prescribed periodic wall heat flux is carried out 
in a manner similar to that which has just been 
presented for prescribed wall temperature. Figure 2 
may be taken as the starting point of the derivation for 
the prescribed heat Hux case, where the distribution 
curve at the top of the figure and the various pulse 
arrays now represent heat tlux rather than tempera- 
ture. Furthermore, Fig. 3 now depicts a basic array of 
heat Rux pulses, the solution for which can be utilized 
to generate the solutions for all N of the pulse arrays 
pictured in Fig. 2. 

For the basic array, the soIution gives the local wall- 
to-bulk temperature difference at the midpoints 
17. , _, . , , N of the segments which make up the typical 
module. These results are expressed as 

(7;,.- T,),,:(yr,%) = A,,, I G ti < N. (II) 

The & (the infiuence coefticients) depend parametri- 
cally on i/’ = (L:r,):Pe. 
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Table 1. Influence coefficients? R, 
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II 0.000 I 0.001 
(Llro)lPe = 

0.0 1 0.1 1.0 

2 
3 
4 
5 
6 
7 
8 
Y 

10 
I1 
12 
13 
14 
15 
16 
17 
IX 
19 
20 

0.48532(+2) 0.22216( +2) 0.99999 ( + 1) 0.432 14( + I ) 0.16611(+1) 
-0.16147(+2) -0.74815( + 1) -0.34590(-i- 1) -0.15958(+ I) -0.75795(O) 
-0.62273( + I ) -0.28764( + 1) -0.13201(+ 1) -0.5’)974(0) -0.29958(O) 
-0.38842(+1) -0.178X6(+ 1) -0.81465(O) -0.36376(O) -0.18765(O) 
-0.28657( + 1) -0.13157(+1) -0.59482(O) -0.26090(O) -0.12802(O) 
-0.23094( + I ) -O.l0553(fl) -0.47374(O) - 0.204 I I (0) -0.885X0( - I ) 
-0.19528(+1) -0.89180(O) -0.39767(O) -0.16832(O) -0.61425(-l ) 
-0.17120(+1) -0.77997(O) -0.34562(O) -0.14377(O) -0.42610( - 1) 
-O.l5371(fl) -0.69877(O) -0,30782(O) -0.12587(O) -0.29559( - 1 I 
-O.l4044(+1) -0,63713(O) -0.27911(O) - 0. I I ‘24(O) - 0.20506( - 1) 
-0.13002(+1) -0.58870(O) -0.25654(O) -0.10149(0) -0.14225( - I ) 
-0.12160(+ 1) -0.54961(O) -0,23832(O) -O.Y2780( - I ) -O.Y8686( -2) 
-0.11466(+1) -0,51733(O) -0.22326(O) -0.X5771(-1) -0.68461(-2) 
-0.10882( + I) -0.49020(O) -0.21060(O) -0,794Y3( - I ) -0.47493( -2) 
-0.10383(+1) -0.46703(O) -0.19979(O) -0.74288( - 1) -0.32947( -2) 
-0.99513(O) -0.44698(O) -0,19042(O) -0.69771( - 1) -0.22856( -2) 
-0.95737(O) -0.42943(O) -0.18223(O) - 0.65802( - 1) -0.15856(-2) 
-0.92401(O) -0.41392(O) -0.17498(O) -0.62279( - 1) -0.10100(-2) 
-0.89427(O) -0.40010(0) -0.16852(O) -0.59120(- 1) -0.76308( -3) 
-0.X6756(0) -0.38769(O) -0.16271(O) -0.56261(- 1) -0.52937( - 3) 

tThe numbers in parentheses denote powers of ten 

Table 2. Influence coefficients? A,, 

II 0.000 I 0.00 1 
(L:r,);Pe = 

0.01 0.1 1.0 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.037236 
0.027942 
0.024956 
0.023806 
0.02314s 
0.022696 
0.022362 
0.022098 
0.02 I xx I 
0.02 I6Y 7 
0.0215.37 
0.021396 
0.02 1270 
0.02 I 155 
0.02 1050 
0.020952 
0.020862 
0.02077x 
0.02069X 
0.020623 

0.054007 0.090930 0.17387(O) 0,34472(O) 
0.033945 0.047224 0.745X0( - 1) 0.84525( - 1) 
0.027424 0.0328 12 0.42311(-l) 0.21067( - 1) 
0.024907 0.027239 0.30020( - 1 j 0.58010( -2) 
0.023457 0.024030 0.23110(-l) 0.16060( - 2) 
0.02247 I 0.021859 0.18567(- 1) 0.44474( - 3) 
0.02 173X 0.020259 0.1530X( - 1) 0.12316(-3) 
0.02 115X 0.0 I8992 0.12940(-I) 0.34108(-4) 
0.02068 1 0.017956 0.1097X( - I ) O.Y4457( - 5) 
0.020277 0.017081 O.Y4027( - 2) 0.26158(-5) 
0.019926 0.016327 0.81OYX( -2) 0.72441(-6) 
0.019616 0.015665 0.70300( -2) 0.20061(-6) 
0.019338 0.015075 0.61166( -2) 0.55556( - 7) 
0.019086 0.014544 0.53364( -2) 0. I5386( - 7) 
0.018X56 0.014061 0.46651(-Z) 0,4260X( - 8) 
0.018643 0.013618 0.40845( - 2) 0.11803( -8) 
0.01 X445 0.013210 0.35803( -2) 0.32724( - 9) 
0.018260 0.012830 0.31409(-2) 0.90767( - 10) 
0.018086 0.012477 0.27572(-2) 0.24374( - 10) 
0.017922 0.012145 0.24215( -2) 0.80034( - 11) 

tThe numbers in parentheses denote powers of ten 

The influence coefficients can be used to superpose 

the various pulse arrays of Fig. 2 so as to synthesize the 
given heat flux distribution. The process follows a 
pattern identical to that for the case of prescribed 
temperature, but with one exception. For prescribed 
periodic wall temperature, the bulk temperature is the 
same at corresponding axial stations in successive 
modules. On the other hand, for prescribed periodic 
heat flux, the bulk temperature will, in general, change 
from module to module by an amount ATh [equation 
(2)]. Therefore, it is appropriate to identify the value of 
the bulk temperature at some reference location. 

Since attention is being focused on a module which 
extends from s = .s+ to .Y = (r+ + L) as depicted at the 

top of Fig. 2, the bulk temperature 7;’ at s = .x+ will 
be used as the reference value. The use of this reference 
temperature means that appropriate constants have to 
be added to the influence coefficients. This follows 
because 

r,., - Th+ T,,.,, - Thn r,,, - Th+ 

@o/k) =rqr,ik,+---. (qr,ik ) 
(12) 

The first term on the right is A,, whereas the second 
term is the change in the bulk temperature between .Y 

HMTVol. 21, No. 5-C 
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= .y+ and .Y = Y,~. The latter is evaluated from the which corresponds to the wall temperature distri- 
energy balance bution (15 ). 

hc,dT,/d.u = 2xr&) or 

dir,jdX = (4r,Jk)q(X) (13) 

where q(X) = y at a pulse and is zero otherwise. 
Aside from the modification just discussed, the 

superposition of the various pulse arrays proceeds as 
before, with the result 

The application of equation (14) and Table 2 to the 
heat flux (17) yields a wall temperature distribution 
that is shown in Fig. 5. Also plotted in the figure is the 
exact solution, equation (IS). The agreement in evid- 
ence in this figure is even better than that of Fig. 4. 

As will be demonstrated in the next section of the 
paper, influence coefficients for any number of sub- 
divisions il’ can be generated without difficulty. To 
examine the elrect of the number ofsubdivisions on the 
results, the heat flux distribution corresponding to the 
wall temperature (15) was evaluated from equation 
(10) using influence c(~effjcients based on N = 40 and 
N = 80. These results are plotted in Fig. 6 along with 
the exact solution (17). It is evident that higher 
accuracy can he obtained by using a greater number of 
subdivisions, although N = 20 should be sufficient for 
most applications. 

+ r: A,*j+,-,& 
I,=,+ I 

(14) 

The quantity I is the dimensionless pulse width defined 
by equation (6). 

Equation (14) can be employed to evaluate the wall 

temperature distribution for any prescribed periodic 
variation of the wall heat flux. A listing of the influence 
coefficients A,, for the circular tube is given in Table 2 
for N = 20 and for the same values of (L/r,)/Pe as were 
used for Table 1. 

APPl,iCATlON OF THE SOLUTION METHOD 

To illustrate the method, solutions were sought for 

the periodic wall temperature variation 

T,. = sin(i?n.u/L) (15) 

where the amplitude is chosen as unity for con- 
venience. As noted earlier, a constant can be added to 
equation (15) without affecting the results. The dimen- 
sionless module length (L/r,)/Pe was selected as IO-‘. 

The heat flux distribution corresponding to equa- 
tion (I 5) was obtained in two ways. One was by using 
equation (10) in conjunction with Table 1. For the 
other, the solution was recognized to be of the form 

T(r,.-cj = ~(r)sin(2~.~~~)+~(r)cos(2~.~~~). (16) 

When equation (16) is substituted into the energy 
equation (3), a pair of coupled ordinary differential 
equations are obtained for x and II/. These were solved 
by finite differences, with the result 

qr,:/i = 6.23 sin(2n.Y; t)+ 3.95 cos(27t.u/l). (17) 

Figure 4 shows a comparison of the heat flux 
distribution obtained from equation (10) and Table 1 
with that from equation (I 7). The agreement is seen to 
be quite satisfactory, especially in view of the minimal 
computation~~i effort involved in applying equation 
(10). Furthermore, the influence coefficients R, that 
were used as input to equation (10) are based on only 
20 subdivisions. As will be demonstrated shortly, even 
better agreement can be obtained when a greater 
number of subdivisions are employed. 

As a second illustration, equation (14) and Table 2 
were employed to predict the wall temperature in the 
presence of a prescribed heat Rux. For this purpose, the 
given heat flux distribution was that of equation (17), 

It is interesting to observe that equation (I 5) and its 
harmonics, when taken together as a Fourier series, 
provides an alternative approach to solving problems 

ofprescribed periodic wall temperature. To implement 
such an approach, it would have been necessary to 
obtain wall heat flux results similar to equations (17) 
for all the harmonics. The coefficients in these equa- 
tions would then be tabulated in a manner similar to 
the listing of the influence coefficients in Table 1. 

The selection of the pulse method in preference to 
the aforementioned Fourier method was based on the 
fact that the latter would require an additional pre- 
paratory step to initiate its use. Specifically, the user 
would have to fit a Fourier series to the prescribed wail 
temperature variation. Furthermore, for many types of 
variations, especially those involving discrete data or 
rapid changes. it is not possible to obtain a satisfactory 
fit with a Fourier series. By comparison, the task of 
discretizinga given variation into pulse arrays involves 
virtually no effort. Also, the pulse representation can 
usually be made to tit the given variation to any degree 

of accuracy. 

DE’l’ERlWWATION OF THE IhFLL!ENCE COEFFICIENTS 

As noted earlier, there are various options available 
for the determination of the influence coefficients. In 
certain problems, it may be necessary to solve the 
energy equation for one typical module in a periodic 
array of pulses such as those pictured in Fig. 3. On the 
other hand, in other problems, the influence coef- 
ficients may be deduced from available solutions by 
means of algebraic operations. This latter approach 
can be employed for determining the influence coef- 
ficients for laminar tube ilow with prescribed periodic 
variations of wall temperature or wall heat flux, 
respectively listed in Tables I and 2. The case of 
prescribed wall temperature will be considered first. 

In the literature, solutions are available for the 
fundamental problem of a hydrodynamically de- 
veloped, isothermal laminar flow with bulk tempera- 
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FIG. 4. Wall heat flux distribution corresponding to a sine- 
wave wall temperature variation. Equation (IO) was eva- 

luated with h’ = 20. 
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Fici. 5. Wall temperature distribution corresponding to the 
wall heat flux variation of equation (17). Equation (14) was 

evaluated with N = 20. 

*r 

FIG. 6. Effect of the number of subdivisions .V on the 
predictions of equation (IO). 
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ture ‘&,a entering a tube whose wall temperature is 
uniform and equal to ?;v. Since the energy equation 
which forms the basis of these solutions is linear, it 
enables superposition of variants of the fundamental 
problem. Furthermore, without loss of generality, To 
can be taken as the datum temperature (i.e. The = 0) 
and 7;,. referred to it. 

For the fundamental problem, the solution for the 
local wall heat flux has the form 

(18, 

where i is the distance measured downstream from the 
cross-section where the flow first encounters the wall 

temperature T,. The explicit algebraic expressions 
for ,f’ wilt be presented later. In addition, in view 
of the argument of f: it is advantageous to work in 
terms of the dimensionless streamwise coordinate X 
= (s/ro)/Pe and, in what follows, all lengths will be 
dimensionless with respect to r,Pe. 

With regard to superposition, suppose, for example, 
that the solutions for the following problems are to be 
added. 
(a) Hydrodynamically developed, isothermal flow 

with bulk temperature T,, = 0 for X < 0. Tube 
wall temperature uniform and equal to T,,, for X 
> 0. 

(b) Hydrodynamically developed, isothermal flow 
with bulk temperature ThO = 0 for X < 1. Tube 
wall temperature uniform and equal to - r,;,, for X 
> 1. 

The wall temperature distribution for the problem 
which results from the additive superposition of (a) 
and (b) is 

T = 0. X < 0 

T=7;,, O<X<i (19) 

T=O. X>l i 

which represents a wall temperature pulse of height 7;, 
and duration 1. 

A pair of such pulses which are spaced by a 
dimensionless distance Y can be synthesized by 
adding to (a) and (b) the following: 
(c) Same as (a), but with 0 in the X-inequalities 

replaced by Y(‘. 
(d) Same as (b), but with I replaced by (I+ Y’). 
By proceeding along these lines, a periodic array of 
pulses of duration I that are separated by a period 
length Y can be built up. The solution for the array is 
the sum of the solutions for problems (a), (b), (c), . . 

For these pulses, the local heat flux distribution in 
the periodic thermally developed regime can be de- 
duced by making use of the aforementioned super- 
position. To facilitate the derivation, reference is made 
to Fig. 3 which shows the periodically pulsed wall 
temperature distribution for several modules in the 
developed regime. Each module is subdivided into N 
segments of length I such that the period length 1/’ is 
equal to Nl. The points 1,2,. . , N are positioned at the 
midpoints of the respective segments. Attention is 
focused on the module delineated by braces. 

Consider first the contribution to the heat flux at 
points 1,2,3,. . due to the pulse at segment 1. This 
pulse is created by temperature steps of height T,, and 
- T;?. respectively applied at X = X* and X = X* + 1. 
From equation (1 X), there follows 

qrr,,fk7;,. =,/‘(3//3)-,j(//?) 

I 

(20) 

ff.,‘“.k7;,. =,1’(51/2)-,f’(31/2) 

and so forth. 
Next, the contributions to yi, q,, qj,. . of the pulse 

between X = (X* -- U) and X = (X* - U)+ I can be 
written 

qlro;k7;,. =,f(i/‘+//2)-f’(i/‘-1/2) 

~~r*~k~,. =,f’(u+3I!‘2)-f’(Y+ij?) 

I 

(21) 

y,r,jkK,, =,f( ~‘+51/2)-,f(U+31/2) 

etc. The contributions of all prior pulses follow in a 
similar manner. 

At any point II = I,&..., the sum of all such 
contributions leads to 

q,r,jk7;,. = 1 ;,f’[(m- l)Y’+(2n - 1)1/‘2] 
m=l 

-,f’[(m - l)y’+ (21x-3)1/2]} (22) 

where,/‘= 0 when its argument is negative. The upper 
index of the summation has purposely been left 
indefinite since the summing operation is continued 
until q, is not affected by the use of additional terms. 

Equation (22) was employed in the determination of 
the Q influence coefficients of Table I, where N = U/l 
= 20. It was also employed to generate the influence 
coefhcients for iv = 40 and 80 used in Fig. 6. 

For the evaluation of equation (22), algebraic 
expressions for f were taken from equation (18) and 
Table 4 of [3] and from equation (5) and Table 1 of [4]. 
The first of these is a Leveque-type solution and is 
especially accurate at small values of the argument ofj 
It was used for ~~r~uments between zero and 0.0076. 
The second, a Graetz-type solution whose accuracy 
increases as the argument increases, was used for 
arguments greater than 0.0076. At the break point, 
both expressions yield identical values of,f: 

The influence coefficients for prescribed wall heat 
flux will be derived by a procedure similar to that of the 
foregoing. The fundamental problem whose solutions 
will now be utilized is that in which a hydrodynami- 
cally developed, isothermal flow (bulk temperature 
‘I& = 0) enters a tube in which there is a uniform wall 
heat flux if. The solution for the wall temperature 
distribution has the form 

(23) 

where < is the downstream distance from the cross- 
section where y is first imposed. 
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By superposing positive and negative heat tlux steps 

in a manner identical to that of the preceding section, a 
periodic array of heat pulses of height q, duration /, and 
period length Y can be constructed. Figure 3 will now 
be employed as a representation of such an array. 

The pulse that is astride the segment 1 is the 
resultant of heat Rux steps of height q and -y, 
respectively applied at X = X* and X = X* + 1. Cor- 
responding to this pulse, the dimensionless wall tem- 
peratures ~s,,,,(~~~~~~) at points 1.2,. . . can be written 
with the aid of the fundamental solution (23). The 
resuiting algebraic expressions are identical to the 
RHS of equation (20), withfreplaced by g. In the same 
way, the contribution of the pulse between X = (Xc 
- V) and X = (X* - U)+ I to T,,,,,/(qr,/k) is given by 
the RHS of equation (21), again withf’replaced by LJ. 
The contributions of all prior pulses can be written in 
an analogous manner. 

The wall temperature distribution in the module of 
interest can be obtained by summing the various 
contributions identified in the prior paragraphs with 
the result 

~~~~(qr~/~) = RHS of (22) with ,f’- g. (24) 

It is important to note that 7,,n will increase steadily as 
more and more terms are taken in the summation that 
appears on the RHS of equation (24). This is because 
the wall temperature itself never becomes fully de- 
veioped. Rather, it is (T,,,- T,) that is endowed with 
fully developed characteristics. 

It is, therefore, relevant to obtain expressions for (7;, 
- &),/(qr,/k). With regard to the bulk temperature, its 
variation is governed by 

dT,/dX = (4r,lk)q(X) (25) 

where q(X) = q at the successive pulses and is zero 
otherwise. From this, it readily follows that 

IT;,,,l(qr,lk) = c (40 - 2% I (26) 
Ill=1 

where 6,, =l or 0 when n=l or #I. Then, by 
bringing together equations (24) and (26), 

(T, - T,),/‘(qr,jk) = RHS of (24) - RHS of (26). (27) 

The summing operation in equation (27) is continued 
until the use of additional terms has no more effect. 

For the numerical evaluation of equation (27), the 
expression for g given in equation (17) and Table 2 of 
[3] was employed for arguments between zero and 
0.033. For arguments greater than this value, the 6) 
expression was that of equation (9) and Table 1 of [5]. 

Equation (27) was used to generate the influence 
coefficients A listed in Table 2. The calculations were 
performed with N = .Y’// = 20 and for several para- 
metric values of Y. 

CONCLUDING REMARKS 

It has been demonstrated that a streamwise periodic 
variation of either the wall temperature or the wall 
heat flux gives rise to a periodic thermally developed 

regime at sufficiently large downstream distances. If L 
denotes the period length of the variation, then in the 
developed regime successive streamwise modules of 
length L possess similar heat-transfer characteristics. 

A methodology was developed for obtaining uni- 
versal solutions for the periodic thermally developed 
regime, either for prescribed wall temperature or 
prescribed wall heat flux. When the temperature is 
prescribed, the method enables the distribution of the 
wall heat flux in any typical period length to be 
determined via the summing of a simple series. The 
coefficients in the series (i.e. the influence coefficients) 
are universal in that they do not depend in any way on 
the wall temperature distribution. The series will 
accept any temperature distribution as input. 
Similarly, a series involving universal coefficients 
was constructed for determining the wall tempera- 
ture distribution corresponding to any periodic wall 
heat flux variation. 

The influence coefficients for the case of given 
temperature stem from the solution of a problem 
consisting of a periodic array of temperature pulses. 
Similarly, for given heat flux, the basic problem is that 
of a periodic array of heat pulses. These problems may 
be solved by dealing directly with the differential 
energy equation and using the fact that only a typical 
module of period length L need be considered for the 
thermally developed solution. 

An alternative procedure for solving the basic pulse 
problem was developed here which circumvents the 
task of solving the energy equation. It makes use of 
available thermal entrance region solutions for uni- 
form wall temperature and uniform wall heat flux. The 
pulse problem results are obtained by performing 
summing and differencing operations on the entrance 
region solutions. This approach was employed to 
generate the influence coefficients listed in this paper 
for laminar pipe flow. 

The universal solution method was illustrated by 
application to sine wave temperature and heat flux 
distributions, and good agreement was obtained with 
the results of a finite-difference solution. 

The methodology developed here is not restricted to 
laminar tube flows. Rather, it can be employed for any 
duct flow situation for which the appropriate influence 
coefficients can be generated. 

The use of a Fourier series method as an alternative 
approach for solving problems of prescribed periodic 
wall temperature or heat flux was discussed in the text 
following the illustrative example. The reasons for 
preferring the pulse method were outlined there. 
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LE REGIME PERIODIQUE THERMIQUEMENT DEVELOPPE DANS DES 
TUBES AVEC TEMPERATURE OU FLUX PARIETAUX PERIODIQUES 

LONGITUDINALEMENT 

Rbum&Un rtgime ptriodique thermiquement dtveloppl s’ttablit ;i partir d’une certaine distance de 
I’entrie lorsqu’un Ccoulement dans un tube est soumis h une variation pCriodique de tempirature de 
paroi ou de flux parittal dans le sens du courant. En rigime d&eloppC. les caract&istiques de transfert 
se retrouvent semblables dans des modules successits dont la longueur est t-gale li la pCriode de Lariation 
imposCe. On dCveIoppe une methodologie pourobtenir des solutions universelles pour le rbgime ptriodique 
pleinement d&eloppC. Le rCsultat final du dtveloppement permet d’obtenir la distribution du flux de 
chaleur, correspondant i une variation quelconque de tcmpkrature parittale. par hommation d’une simple 
shie. De m&me est dtterminbe la tempkrature de la paroi quand cst don&e la distribution du flux 
thermique. Les stries contiennent des coefficients d’infuence qui reprCsentent la solution pour une suite 
de pulsations. On prtsente une procddure pour dCterminer ces coefficients d’inlluence, laquelle &ite la 
r&solution de I’+ation de I’knergie. L’utilisation de la mCthodologie est illustrte par le cas de di\tribu- 

tions sinusoidales de la temp&xture et du flux thermiclue 2i la paroi. 

DAS PERIODISCHE THERMISCH AUSGEBILDETE GEBIET IN 
KANALEN MIT IN STROMUNGSRICHTUNG PERIODISCHER 

WANDTEMPERATUR ODER Wz&RMESTROMDICHTE 

ZJusammenfassung-Wenn eine Stramung in einem Rohr oder Kanal in Stromungsrichtung einer periodischen 
Anderung der Wandtemperatur oder der Warmestromdichte an der Wand unteruorfen wird. so bildet sich in 
geniigendem Abstand vom EinlaB ein periodisches thermisch ausgebildetes Gebiet aus. Im ausgebildeten Gebiet 
t:eten in nach Strb;mungsrichtung aufeinanderfolgenden Abschnitten. deren Lange der Periode der aufgegebenen 
Anderung entspricht. ahnliche Wiirmetransporteigenschaften auf. Es wurde eine Methode entwickelt. urn 
allgemeine LGsungen fiir das periodische, voll ausgebildete Gebiet 7u erhalten. Das Endergebnib der 
Entwicklung ermoglicht durch Summieren einer einfachen Reihe die Be$timmung der Vertcilung der 
WCrmestromdichte kings der Wand fiir jede vorgegcbene finderung der Wandtemperatur. Eine ahnliche Reihe 
ermaglicht die Bestimmung der Wandtemperatur. wenn die Verteilung der WGmcstromdichte vorgegeben ist. 
Die Reihe enthalt EinfluBkoeffizienten. welche die Liisung fiir ein Feld von Impulsen darstellen. Es wird tin 
Verfahren zur Bestimmung dieser Einflufikoeffizienten vorgestellt. welches die Notwendigkeit der Liisung der 
differentiellen Energiegleichung umgeht. Die Methode wurde durch Anwendung auf \inuGmige Vcrteilunp 

der Wandtemperatur und Warmestromdichte \eranschaulicht. 

rIEPI,iOflM=IECKMfi PA3BMTbIfi TEI-LJIOBOti PE-IKMM B KAHAJIAX 
C I-IEPEIOAHSECKM H3MEHxIIOlI@IMMCII n0 HAI-IPABJIEHMIO TEYEHMII 

TEMI-IEPATYPOR CTEHKM M I-IJIOTHOCTbIO TEI-IJIOBOrO IIOTOKA 

hlIOTiU@I- Korna Ilpti TeSeHHIU B Tpy6e TeMnepaTypa CTeHKA Tpy6bI Hnii IlJIOTHOCTb TeIInOBOrO 

noToxa Ha CTeHKe nepuonwiecwu A3MeHIIH)TCII no HanpaBneHmo TeYeHHII, TO nepuonwecKd pas- 

BUTbIti TeIInOBOti peNiM YCTaHaBnEiBaeTCFl Ha nOCTaTOYH0 6onbunix paCCTO5iHAXX OT BXOna. npH 

pa3BHTOM peXGiMe OnAHaKOBble KO3+jWiWieHTbl TeIInOO6MeHa BCTpeYaKITUl B nOCnenOBaTenbH0 

'Iepe,JyfOIUHXCR HaIIpaBneHHblX II0 TeYeHI1fO MOJ,yn,lX,~nHHa KOTOpblX paBHaI,epHOny HanOXeHHblX 

B03MyIUeHHfi. Pa3pa6OTaHa MeTOnAKa ITOnyYeHAR YHHBepCanbHbIX peLUeHIlti jTn5l IIepHOnWIeCKOrO 

IlOJIHOCTbKJ pa3BHTOrO peXGiMa, II03BOn,-UOUJaR IIOCpenCTBOM CyMMRpOBaHHH IIpOCTblX pHJ,OB 

0npenennTb pacnpeneneHue nnoTHocTH TennoBoro noToKa Ha cTeHKe npa nto6oM 3anatmoM 
H3MeHeHWU TeMEIepaTypbI CTeHKA. TaKIie pRabI AaH)T B03M0,KHOCTb OnpeDenflTb TeMnepaTypy 

CTeHKH ITpH 3aAaHHOM paCIIpeneneHHA IInOTHOCTH TennOBOrO IIOTOKB. B AaHHblk psn BXO.4RT 

K03+&iu~eHTbI BnmHm, npencTaBnnmwie pemeHue Ann mo6oro Bwa mmynbcoe. Flpennoxeaa 

MeTOJ&iKa OIIpeneneHlisl 3THX K03@$AUAeHTOB, IIpH KOTOPOii OTIIaLIaeT HeO6XOiWMOCTb peUIeHHn 

~H,j,&!peHUHa,IbHOrO ypaBHeHMs 3HeprHH. npE%MeHeHAe MeTOnAKH nOKa3aHO Ha npHMepe WHY- 

COEijJanbHbIX ll3MeHeHAii TeMItepaTypbI CTeHKA II IIJIOTHOCTA TennOBOrO llOTOKa. 


